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Environmental Fluid Modelling

Fundamentals of Computational Fluid Dynamics

(1) Weak Formulation of Governing Equation
Governing Equation
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Boundary Condition
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Method of Weighted Residuals
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Solve the weak form of the governing equation
by dividing the target region into a set of cells (elements)
by assembling the cell-wisely integrated equation into a whole matrix
form

There are multiple methods with respect to the weighting functions

() Finite Difference Method

satisfy the governing equation on points
no conservation of convection term
applicable to arhitrary shape of region by body-fitted grid

w=1 (on rg) wW=0 (others)

%w-Vu:vvzu (on Te)

(b) Finite Volume Method

satisfy the governing equation averagely in each cell

conservation of convection term for high Reynolds number flow
applicable to arbitrary shape of region by body-fitted grid or
unstructured grids

w=1 (in Q) w=0 (others)
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(c) Finite Element Method (Galerkin Method!
satisfy the governing equation approximately in the region
no conservation of convection term

applicable to arbitrary shape of region by body-fitted grid or
unstructured mesh

w=N where u=U-N
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(2) Algorism to Solve Incompressible NS Equation

(a) MAC Method (Marker and Cell) of Harlow and Welch (1965)

FDM, FVM, FEM
Unsteady (and steady)
Staggered Grid
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Solve this by SOR (Successive Over Relaxation). Boundary condition for p on

2,
the body surface is given by Vp:% .

(b) SMAC Method (Simplified MAC) of Amsden and Harlow (1970)

U' -u
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Introduce irrotational velocity (potential flow)
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Boundary conditionfor @ on the body surfaceisgivenby va=0.
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(c) Projection method of Chorin (1968) - Velocity-Pressure Simultaneous I teration

No direct boundary condition for pressure.
Consider a pseudo time-developing equation for &p.
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where o is pseudo time-step and, at the same time, relaxation factor in
iterative relaxation method. The upper limit of « is given by considering the
diffuson number for stability. m is the number of iteration and the
convergence is achieved when 5p™* - 5p™ <¢. The resultant u™ satisfies the
continuity equation and, therefore, u™*=u™. No need of the boundary
condition for pressure.

(d) HSMAC Method (Highly Simplified MAC) by Hirt and Cook (1972)

Solve Eq. (2) in the following simply approximated way to reduce the
computational time.
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If resultant u™ satisfies the continuity equation, it is u™. In fact, the
pressure silver in HSMAC is regarded as the Newton iteration:
it pm Ve u”

dveu”

dp




(e) SIMPLE Method (Semi-Implicit Method for Pressure-Linked Equation) of Patankar

and Spalding (1980)

FVM
Steady and unsteady
Staggered Grid

Discretised NS Equation is
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Solve these equation implicitly by using initial guessof p. But the coefficients
a are not updated, so that thisis called “semi-implicit”. The resultant u* and
V' do not satisfy the continuity equation. Therefore, the descritised Poisson
equation for &p issolved.
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Then the velocities are corrected.

U1 = u’ i+3 +d, 1(8pi.g —3p; ) (13)
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Vi =V +d,.1(3pj.1 - 8p;) (14)

Application to unsteady flowsis also available.

(f) Pseudo-Compressibility Method of Chorin (1967)

FDM, FVM, FEM

Steady (and unsteady)
Collocation grid (cell-centred)

The difficulty to solve the equation system for incompressible flow stems from
the difference of type between equations for velocity and pressure (parabolic
and elliptic). On the other hand, those for compressible flow are both
time-developing. By analogy from compressible flow, pseudo-compressibility
is introduced in the solver of incompressible flow. The resultant velocity
satisfies the continuity equation (incompressibility), but the velocity on the way
to reach the steady state does not have any sense.
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Mainly, implicit time integration is used, so that fast solvers of inverse matrix
like the Newton method is necessary. Application to unsteady flow is also
studied.

(3) Variable Decomposition and Checker Board (Why Staggered?)

When updating velocity by the gradient of the pressure, sometimes we suffer
artificial oscillation of either of velocity (called “wiggle”) and pressure (called
“checkerboard”). Consider 1D space.
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There is no use of p; and, therefore, cell-wise oscillation of pressure occurs
without oscillating velocity. If Veu issatisfied, thereis no suppression on the
pressure oscillation. In 2D, oscillated pressure contour looks a checkerboard.

To avoid this type of oscillation, velocities should be defined on the edge of the
control volume for pressure (which guarantees the incompressibility). This is
called “staggered grids’. In case of the pseudo-compressibility method,
velocities and pressure are defined at the same point, such as cell-centre.

(4) Grid Systems

(a) Body-Fitted (Boundary-Fitted) Grids

In general, the region of interest has arbitrary shape, so that the grid system
becomes curvilinear fitting to the bodies and boundaries. By the chain rule, the
difference along the curvilinear &; hasthe form of
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Inthe FVM formulation,
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where S, is k Cartesian component of the area vector along the i direction.

Therefore, S isthesame as ff' in Eq. (18).
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(b) Unstructured Grids

If grids are not in order, in other words, normalised gridsin the reference space
are not topologically expressed by the combination of cubic blocks, they are
called unstructured grids (mesh).
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where subscripts o indicates each face shared with the neighbouring cell. sg

is k Cartesian component of the area vector of theface .




(5) Accuracy of Differencing Scheme

(a) Space Derivative

2nd-order Central Differencing

Taylor expansion

au A%, A% A
Uiy = Uj TA—+ +— -

x 202 Tl 4

du _au
8x 2A X

ox3 ox

First Derivative
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Second Derivative
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4th-order Central Differencing

2nd-order accuracy

2nd-order accuracy

1st-order Upwind Differencing
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First Derivative
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2nd-order Upwind Differencing
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3rd-order Upwind Differencing
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(b) Time Derivative m-th-order Explicit Runge-Kutta Scheme
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1st-order Explicit Euler Scheme

Taylor expansion
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2nd-order Explicit Adams-Bashforth Scheme
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1st-order Implicit Euler Differencing
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2nd-order Implicit Trapezoidal Scheme Crank-Nicolson Scheme for Diffusion Term)
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(c) Effect of Numerical Error
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Substitute these for the derivatives in the governing equation

—io=ikA -k?B-ik’C+k*D
~0=-kA-ik?B+k3C+ik*D

uyc = qexpli(ke - o t)]
= qexpfikx—i(-ka - ik?B+ k3c+ik“D)1]
=qexp|- kz(B - kzD)t]e(p[ik{x —(7A + kZC)t}]

B- k2D > 0:damping
B - k2D < 0:divergence
B:diffusion
{— D:dissipation
~A+k?C
— A:convection
{ C:dispersion
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Ex.1
Convection Term  1st-order Upwind Differencing
Diffusion Term  2nd-order Central Differencing
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artificial diffusion
Ex.2

Convection Term  3rd-order Upwind Differencing
Diffusion Term  2nd-order Central Differencing
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artificial dissipation
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Ex.3
Time-Derivative Term  1st-order Euler Scheme
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artificial diffusion
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