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Toru Sato 
 

Environmental Fluid Modelling 
 

Fundamentals of Computational Fluid Dynamics 

 
 
(1) Weak Formulation of Governing Equation 
 

Governing Equation 
 

)( uuut
u ∇ν∇=∇⋅+
∂
∂  

 
Boundary Condition 
 

*uu =  ( 1onΓ )       *τ=∇ν u  ( 2onΓ ) 

 
Method of Weighted Residuals 
 

Ω∫Ω ∇ν∇=Ω∫Ω ∇⋅+∫Ω Ω
∂
∂ duwduwudt
uw )(  

 
Solve the weak form of the governing equation 

・ by dividing the target region into a set of cells (elements) 
・ by assembling the cell-wisely integrated equation into a whole matrix 

form 
 

There are multiple methods with respect to the weighting functions 
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(a) Finite Difference Method 
 

・ satisfy the governing equation on points 
・ no conservation of convection term 
・ applicable to arbitrary shape of region by body-fitted grid 

 

   1w =  (on αr )     0w =  (others) 

u2uut
u ∇ν=∇⋅+
∂
∂    (on αr ) 

 
(b) Finite Volume Method 
 

・ satisfy the governing equation averagely in each cell 
・ conservation of convection term for high Reynolds number flow 
・ applicable to arbitrary shape of region by body-fitted grid or 

unstructured grids 
 

   1w =  (in αΩ )     0w =  (others) 
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(c) Finite Element Method (Galerkin Method) 
 

・ satisfy the governing equation approximately in the region 
・ no conservation of convection term 
・ applicable to arbitrary shape of region by body-fitted grid or 

unstructured mesh 
 
   Nw =   where Nuu ⋅=  

( ) ( ) Ω∫ αΓ
∇ν−Ω∫ αΩ

∇∇ν=Ω∫ αΩ
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(2) Algorism to Solve Incompressible NS Equation 
 
(a) MAC Method (Marker and Cell) of Harlow and Welch (1965) 
  

・ FDM, FVM, FEM 
・ Unsteady (and steady) 
・ Staggered Grid 

 

1n21
1n

p
t

+
+

∇−∇+•−∇=
∆
− uuuuu

Re)(    (1) 

  Fu
•∇−

∆
•∇

=∇ +

t
p 1n2      (2) 

  
Solve this by SOR (Successive Over Relaxation). Boundary condition for p on 

the body surface is given by 
Re

p
2u∇

=∇ . 

 
 
(b) SMAC Method (Simplified MAC) of Amsden and Harlow (1970) 
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Introduce irrotational velocity (potential flow) 

  

  
( )0       1n2

C

C1n

=•∇•−∇=Φ∇

Φ∇=

+=

+

+

uu

u

uuu

Q*

*

    (4) 
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Boundary condition for Φ  on the body surface is given by 0=Φ∇ . 
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(c) Projection method of Chorin (1968) - Velocity-Pressure Simultaneous Iteration 
  

No direct boundary condition for pressure. 
Consider a pseudo time-developing equation for pδ . 
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where ω  is pseudo time-step and, at the same time, relaxation factor in 
iterative relaxation method. The upper limit of ω  is given by considering the 
diffusion number for stability. m  is the number of iteration and the 
convergence is achieved when ε<δ−δ + m1m pp . The resultant mu  satisfies the 
continuity equation and, therefore, 1m1n uu =+ . No need of the boundary 
condition for pressure. 

  
 
(d) HSMAC Method (Highly Simplified MAC) by Hirt and Cook (1972) 
  

Solve Eq. (2) in the following simply approximated way to reduce the 
computational time. 
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If resultant mu  satisfies the continuity equation, it is 1n+u . In fact, the 
pressure silver in HSMAC is regarded as the Newton iteration: 
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(e) SIMPLE Method (Semi-Implicit Method for Pressure-Linked Equation) of Patankar 
and Spalding (1980) 
 

・ FVM 
・ Steady and unsteady 
・ Staggered Grid 

 
Discretised NS Equation is 
 

  ∑ −+= ++++
nb

i1iinbnbii ppAuaua
2
12

1

2
1 )(**    (10) 

  ∑ −+= ++++
nb

j1jjnbnbjj ppAvava
2
12

1

2
1 )(**    (11) 

 
Solve these equation implicitly by using initial guess of p . But the coefficients 

a  are not updated, so that this is called “semi-implicit”. The resultant *u  and 
*v  do not satisfy the continuity equation. Therefore, the descritised Poisson 

equation for pδ  is solved. 
 

∑ +δ=δ
nb

nbnbjiji bpapa ,,      (12) 

 
 Then the velocities are corrected. 
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 Application to unsteady flows is also available.  
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(f) Pseudo-Compressibility Method of Chorin (1967) 
 

・ FDM, FVM, FEM  
・ Steady (and unsteady) 
・ Collocation grid (cell-centred) 

 
The difficulty to solve the equation system for incompressible flow stems from 
the difference of type between equations for velocity and pressure (parabolic 
and elliptic). On the other hand, those for compressible flow are both 
time-developing. By analogy from compressible flow, pseudo-compressibility 
is introduced in the solver of incompressible flow. The resultant velocity 
satisfies the continuity equation (incompressibility), but the velocity on the way 
to reach the steady state does not have any sense. 
 

  p21 ∇−∇+•−∇=
τ∂

∂ uuuu
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  u•∇−=
τ∂
∂ 2cp       (16) 

  
Mainly, implicit time integration is used, so that fast solvers of inverse matrix 
like the Newton method is necessary. Application to unsteady flow is also 
studied. 
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(3) Variable Decomposition and Checker Board (Why Staggered?) 
 

When updating velocity by the gradient of the pressure, sometimes we suffer 
artificial oscillation of either of velocity (called “wiggle”) and pressure (called 
“checkerboard”). Consider 1D space. 
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There is no use of ip  and, therefore, cell-wise oscillation of pressure occurs 
without oscillating velocity. If u•∇  is satisfied, there is no suppression on the 
pressure oscillation. In 2D, oscillated pressure contour looks a checkerboard. 

  
To avoid this type of oscillation, velocities should be defined on the edge of the 
control volume for pressure (which guarantees the incompressibility). This is 
called “staggered grids”. In case of the pseudo-compressibility method, 
velocities and pressure are defined at the same point, such as cell-centre. 
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(4) Grid Systems 
 
(a) Body-Fitted (Boundary-Fitted) Grids 
 

In general, the region of interest has arbitrary shape, so that the grid system 
becomes curvilinear fitting to the bodies and boundaries. By the chain rule, the 
difference along the curvilinear iξ  has the form of 
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In the FVM formulation, 
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where i

kS  is k  Cartesian component of the area vector along the i  direction. 

Therefore, 
V
S i

k  is the same as 
k

i
x∂
ξ∂  in Eq. (18). 

 
(b) Unstructured Grids 
 

If grids are not in order, in other words, normalised grids in the reference space 
are not topologically expressed by the combination of cubic blocks, they are 
called unstructured grids (mesh). 
 

∑
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V
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kxV
1
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   (20) 

  

where subscripts α  indicates each face shared with the neighbouring cell. α
kS  

is k  Cartesian component of the area vector of the face α . 
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(5) Accuracy of Differencing Scheme 
 
(a) Space Derivative 
 
 
2nd-order Central Differencing 
 
 
Taylor expansion 
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Second Derivative 
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4th-order Central Differencing 
 
 
 
 
 
Taylor expansion 

 ( ) ( ) ( )
L4

44

3

33

2

22

i2i
x

u
4

2
x

u
3

2
x

u
2

2
x
u2uu

∂

∂∆
+

∂

∂∆
±

∂

∂∆
+

∂
∂

∆±≈± !!!
 

 
First Derivative 

( )4
5

54
2i1i1i2i O

x
u

x
u

30x
u

12
uu8u8u

x
u

∆+
∂
∂

=+
∂

∂∆
−

∂
∂

=
∆

−++−
≈

δ
δ −−++ L  

2nd-order accuracy 
 

ui+ui-1 

ix
u
∂
∂

ui+ui-1 

ix
u
∂
∂ ui+2 ui-2 

 10 

1st-order Upwind Differencing 

First Derivative 
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2nd-order Upwind Differencing 
 

First Derivative 
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3rd-order Upwind Differencing 
 

First Derivative 
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(b) Time Derivative 
 

Governing Equation ( ) 0tat    uu     , uf
t
u
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time developing: initial-value problem 
 
1st-order Explicit Euler Scheme 
 
 
 
Taylor expansion 
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2nd-order Explicit Adams-Bashforth Scheme 
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m-th-order Explicit Runge-Kutta Scheme 
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1st-order Implicit Euler Differencing 
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2nd-order Implicit Trapezoidal Scheme（Crank-Nicolson Scheme for Diffusion Term) 
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(c) Effect of Numerical Error 
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Substitute these for the derivatives in the governing equation 
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Ex.1  
Convection Term：1st-order Upwind Differencing 
Diffusion Term：2nd-order Central Differencing 

( )∆+
∂
∂

=+
∂

∂∆
−

∂
∂

=
∆
−

≈
δ
δ − O

x
u

x
u

2x
uuu

x
u

2

2
1ii L  

( )2
2

2

4

42

2

2

2
1ii1i

1iii1i

2

2
O

x
u

x
u

12x
uuu2u

uuuu

x
u

∆+
∂

∂
=+

∂

∂∆
+

∂

∂
=

∆

+−
=

∆
∆
−

−
∆
−

≈
δ

δ −+

−+

L  

1D Transport Equation ( 0U > ) 
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  artificial diffusion 
 
 
 
Ex.2 
Convection Term：3rd-order Upwind Differencing 
Diffusion Term：2nd-order Central Differencing 
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1D Transport Equation ( 0U > ) 
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   artificial dissipation 

 15 

Ex.3 
Time-Derivative Term：1st-order Euler Scheme 
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