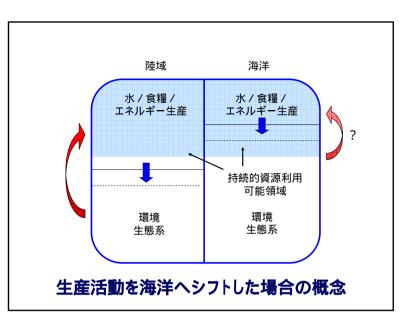
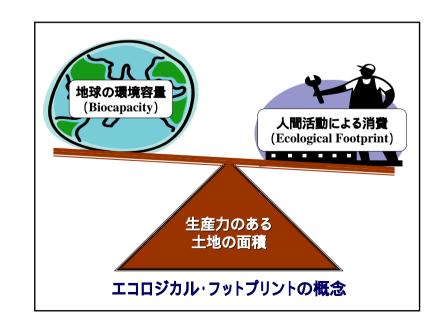
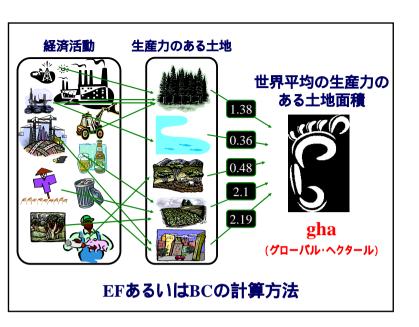

海洋の大規模利用に対する環境影響評価 ~ 多様なステークホルダーが共通の 基準で考えるために ~

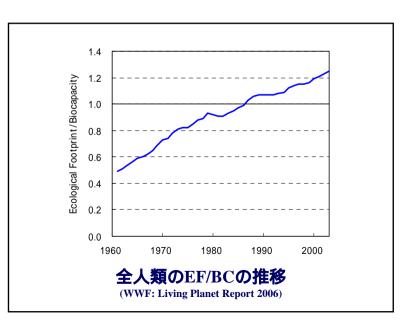

新領域創成科学研究科 海洋技術環境学専攻 佐藤 徹

基本コンセプト

- 海洋には持続的生産可能な未利用資源が多く、その利用は人類の発展に多大な恩恵。
 - メタンハイドレートや熱水鉱床等の資源開発、CCS、深層水汲上げや栄養塩・鉄散布、海洋再生可能エネルギー開発等の海洋の大規模利用の普及は重要。
- 環境と開発を二元論として捉えるのではなく、海洋環境保全のみならず、開発に伴う環境改変を新たな環境 創成として考え、計画時から環境調和型の開発を目指した研究開発を行う必要。
- これにより海洋利用技術の格差付け、ひいては国際競争力アップを狙う。

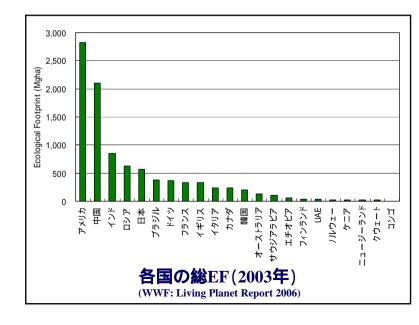


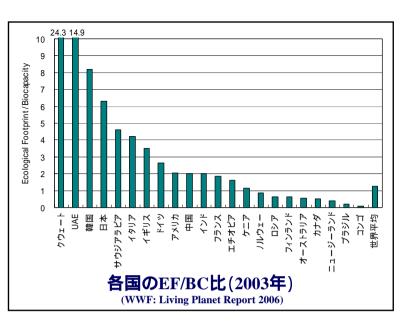

エコロジカル・フットプリントとは


- 開発時期:1990-1991
- 開発者: Prof. William Rees & Dr. Marthis Wackernagel (Univ. British Columbia)
- 目的:人間経済によるサービス需要量が、地球の供給能力とバランスがとれたものになっているか(Overshootしていないか)を比較、検討するために開発
- ・ 指標: 生態学的に生産性のある土地の面積

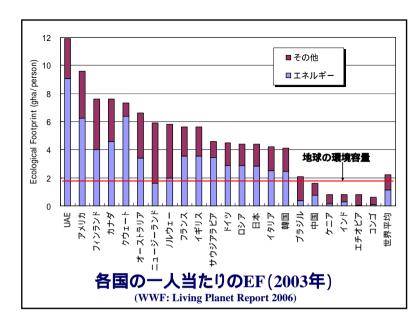
包括的環境影響評価指標の必要性

- 海洋利用をした方がよいか、しない方がよいかを 判断する評価指標
 - 陸域・海域を合わせて評価
 - 「しっぺ返し(リスク)」と経済性(ベネフィットとコスト)を 合わせて評価
- 既存の評価指標
 - エコロジカル・フットプリント(EF)
 - 環境リスク論的評価指標(RBA, CBA)





計算に用いられる土地区分と等価係数


イメージ	土地区分	等価係数	用途		
	耕作地	2.1	穀物等とそれらを 飼料とする畜産等		
	牧草地	0.48	牛、羊の生産等		
	森林地 = エネルギー地	1.38	木、紙製品製造、 エネルギー利用		
	生産力のある 海水・淡水域	0.36	漁獲等 (沿岸域のみ考慮)		
	生産力阻害地 (消費地)	2.19	道路、建造物等		

EFは包括的指標になり得るか? EFの課題

- あくまで「経済的生産活動の環境的指標」
- 「リスク」を評価できない!

環境リスク論とは

- 開発時期:1990年代
- 開発者: 中西準子(当時東京大学教授,現(独)産業技術総合研究所化学物質リスク管理研究センター長)
- 目的:地球温暖化や化学物質の人体への影響などに代表されるような,広域的,長期的環境影響問題に対して,多面的な環境影響評価を行い,リスク・ベネフィット原則により意思(政策)決定を管理する
- · 指標:貨幣価値

環境リスク評価で考慮すべき項目

時制		環境影響				
	経済的 な損失	人の健康への影響	生態系への影響	資源の 消費	ベネ フィット	
現在	P1	P2	Р3	P4	P5	
未来	F1	F2	F3	F4	F5	

RBA & CBA

•コストペネフィット解析 (CBA)

YES·NO の判断ができる

•リスクペネフィット解析 (RBA)

単位リスク削減コスト Priorityを判断できる

現実的な評価の枠組み

時制経		環境影響								
	経済なれ	育的 員失	人の への	健康	生態の影	系へ響	資源の 消費		ペネ フィット	
現在	P1	С	P2	HR	Р3	ER	P4	С	P5	С
未来	F1	С	F2	HR	F3	ER	F4	С	F5	С
	: コス : 人の) ク(H	ealth	Risk))	HR:	× VH :	= C

 $ER \times VE = C$

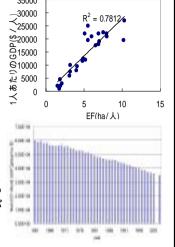
ER: 生態リスク (Ecological Risk)

RBAやCBAは包括的指標になり得るか 環境リスク論の課題

- 化学物質の人体影響評価には非常に有効
- 生態リスクには、エンドポイントとして生物多様性の減少、すなわち種の絶滅を考える
- Value of human life(VH)、Value of ecology (VE)のうち、特にVEの金銭換算が困難

包括的環境影響評価指標

Inclusive Impact Indicator III (Triple I)


- 生態リスク(ER)は金銭換算が難しく、人間リスク (HR)は経済価値に換算しやすい。(中西ら、2003)
 - 生態リスク(ER)は面積換算してEFと統合
 - 人間リスク(HR)は金銭換算してCと統合

III-footprint=
$$\triangle EF + \triangle ER$$
III-money= $\triangle HR + \triangle C$

$$III = (EF + \alpha ER) + \frac{\sum EF}{\sum GDP} (\beta HR + C)$$

- 日本船舶海洋工学会「海洋の大規模利用に対する包括 的環境影響評価委員会(IMPACT委員会)」が提案。
- 環境リスクと経済性の概念を統合した環境影響指標。
 - EF: エコロジカル・フットプリント
 - ER: 生態リスク
 - HR: 人間リスク
 - C:コスト ベネフィット
 - **EF**/ **GDP** EF/経済価値換算係数
- 対象となる技術/開発を実施した時と実施しない時の差を 算出し、その値が負であれば有効と判断する。

- 経済価値換算係数
 ΣEF/ΣGDPによって生態に
 関する項目と人間に関する
 項目を面積として統合。
- 2007年1月の時点でΣΕF/ ΣGDPの値は円換算で、
 2.8E 06 [gha/円]
 - 357千円/ha=118円/坪
- 技術革新が進むと、ΣΕF / ΣGDPの値は小さくなる傾向。
 - 人間リスク及びコストの重みが 相対的に小さくなる。

IIIで考慮される項目

技術	±	エコロジカル フットプリント	生態リスク	健康リスク	コスト& 利益	ライフ サイクル	代替技術	比較基準量
		(EF)	(ER)	(HR)	(C)	(LC)		
海洋肥沃化	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	20年	養殖 畜産	動物性 タンパク質
	-	人工湧昇			利益		養鶏	生産量
CO2海洋隔離	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	100年	現状	CO2排出量
	-	CO2隔離	ERの減少	HRの減少	利益			
海洋エネルギー	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	- 20年	化石燃料 原子力	エネルギー
	-				利益	204	陸上の自然 エネルギー	生産量
海底鉱物資源 開発	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	20年	陸上鉱物	鉱物資源 生産量
	-				利益	-	貝冰州九	土庄里
海上輸送	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	20年	自動車輸送 鉄道輸送	輸送量
	-				利益		航空機輸送	
環境修復	+	CO2排出 海面利用	ERの増加	HRの増加	コスト	100年	現状	占有海面積
	-	生態系の創出	ERの減少	HRの減少	利益			